On penalized likelihood estimation for a non-proportional hazards regression model
نویسندگان
چکیده
منابع مشابه
L1 penalized estimation in the Cox proportional hazards model.
This article presents a novel algorithm that efficiently computes L(1) penalized (lasso) estimates of parameters in high-dimensional models. The lasso has the property that it simultaneously performs variable selection and shrinkage, which makes it very useful for finding interpretable prediction rules in high-dimensional data. The new algorithm is based on a combination of gradient ascent opti...
متن کاملBayesian proportional hazards model with time-varying regression coefficients: a penalized Poisson regression approach.
One can fruitfully approach survival problems without covariates in an actuarial way. In narrow time bins, the number of people at risk is counted together with the number of events. The relationship between time and probability of an event can then be estimated with a parametric or semi-parametric model. The number of events observed in each bin is described using a Poisson distribution with t...
متن کاملMaximum likelihood estimation in the proportional hazards cure model
The proportional hazards curemodel generalizes Cox’s proportional hazardsmodel which allows that a proportion of study subjects may never experience the event of interest. Here nonparametricmaximum likelihood approach is proposed to estimating the cumulative hazard and the regression parameters. The asymptotic properties of the resulting estimators are established using the modern empirical pro...
متن کاملA local likelihood proportional hazards model for interval censored data.
We discuss the use of local likelihood methods to fit proportional hazards regression models to right and interval censored data. The assumed model allows for an arbitrary, smoothed baseline hazard on which a vector of covariates operates in a proportional manner, and thus produces an interpretable baseline hazard function along with estimates of global covariate effects. For estimation, we ext...
متن کاملPenalized Likelihood Functional Regression
This paper studies the generalized functional linear model with a scalar response and a functional predictor. The response given the functional predictor is assumed to come from the distribution of an exponential family. A penalized likelihood approach is proposed to estimate the unknown intercept and coefficient function in the model. Inference tools such as point-wise confidence intervals of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics & Probability Letters
سال: 2013
ISSN: 0167-7152
DOI: 10.1016/j.spl.2013.03.007